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Directed random walks on directed percolation clusters
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The characteristics of directed random walks on directed percolation clusters are numerically studied. For
two-dimensional clusters grown at the critical probabilitypc , it is shown that the distanced of the directed
random walkers from their most probable end point is determined by a probability distributionp(d)
;d2(11w/n), where the values ofw and n are close to the values of the known exponents:w.0.50 andn
.0.63. This probability distribution is independent of the cluster’s lengtht up to d values comparable to the
cluster’s width;tn. The results are shown to be consistent with a tree description of the directed percolation
clusters.
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The subject of random walks on percolation cluste
known as the ‘‘ant in the labyrinth’’ problem@1#, has drawn
quite intensive attention in the physical literature@2#. How-
ever, in spite of the numerous efforts, no simple connec
was found between the static and dynamical exponent
percolation, though the Alexander-Orbach conjecture@3#
comes close to this goal. In this article, it is shown that su
a simple connection does exist in the special case of dire
random walks on directed percolation clusters.

In the directed percolation model@4#, there is a predefined
direction in which the percolation clusters can grow. In t
directed random walk considered in the present study, w
are also performed only in the same predefined direct
Balents and Kardar@5# have already studied random walk
on directed percolation clusters, but while their main conc
was the variability of distances betweendifferent clusters,
the main concern of the present article is the variability
distanceswithin each cluster.

In order to study this issue, numerical results were
tained for directed random walks performed along tw
dimensional directed percolation clusters grown at the c
cal probabilitypc . These numerical results indicated that t
distanced of the directed random walkers from their mo
probable end point is determined by a probability distrib
tion p(d);d2(11w/n), where w.0.50 andn.0.63. This
probability distribution is independent of the cluster’s leng
t up to d values comparable to the cluster’s width;tn. The
known values of these two exponents are shown to be c
sistent with a tree description of the directed percolat
clusters.

The article starts with a description of the model and
way the numerical data were gathered. The second part
sents the numerical results which have similar characteris
to previous results@6# obtained for the directed polyme
model@7,8#. This similarity is investigated further in the fina
part of the article. The connection between the directed
colation model and the directed polymer model was stud
in a number of articles@9–13#, and the present study poin
1063-651X/2003/67~5!/050101~4!/$20.00 67 0501
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to some similarity between entropy in the directed perco
tion model, and energy in the directed polymer model.

On an arbitrary lattice structure, a directed percolat
cluster can be defined as the set of lattice points~sites! which
are connected to some origin, while the connecting paths
oriented in a predefined direction~thus all of them are of
equal length!. The bonds~or sites! which compose the pos
sible paths are assigned at random from a bimodal (0
distribution, and a connecting bond is one whose value
zero. The probability to get a zero-valued bond is denoted
p, and there is a critical probability (pc) to get a zero-valued
bond, above which the probability to get infinite directe
percolation clusters is positive. In the two-dimensional ca
at pc , the width of the clusters and the distance of th
center from the origin grow in proportion totn: n.0.633
@14#, wheret is the length of the cluster.

In this study, random bond directed percolation clust
were grown at the critical probabilitypc using the Leath
method @15#. The clusters were grown to various length
more than a million clusters were grown fort532 000, and
more than 10 000 were grown fort5256 000. For each clus
ter point ~site!, the number of paths connecting it to the o
gin was recorded. At the cluster’s lengtht, the point with the
highest number of connecting paths is denoted by (m,t).
This point is the most probable end point of a directed r
dom walker which survivest steps without being trapped i
one of the dead ends of the cluster. Of course, in each clu
the position of the point (m,t) is different, and the mean
transversal distance of the point (m,t) from the origin is
;tn.

On the regular lattice, the point (0,t) is the point with the
highest number of paths to the origin at (0,0), a fact wh
makes it the most probable end point of a directed rand
walker aftert steps. Thus, just as the transversal distance
the regular lattice are measured from the point (0,t), the
transversal distances in the present case were measured
the point (m,t). Two main measures for the distanced of the
random walkers from the point (m,t) were used in this study
The first is the ABS variable, which measures the mean
©2003 The American Physical Society01-1
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tance, and the second is the RMS variable, which meas
the root of the mean squared distance. In order to overc
the problem of finite-size effects, the difference seri
d(2t)2d(t), was also computed. It is easy to see that
d(t);ta, thend(2t)2d(t) should also grow asta, and the
results related to the difference series might converge fa
to the asymptotic behavior ofd(t).

The results of the numerical study are presented in te
of local values of the growth exponents computed
logl2„V(lt)/V(t/l)…, whereV is the variable whose rate o
change is estimated, andl is an arbitrary constant:l52 in
this study.

As mentioned above, if a random walker is actually s
to a directed walk along a directed percolation cluster, i
most probable that he will stop at one of the dead ends of
cluster. Thus, the present study is limited to random wa
which survive t steps, and arrive at the base of at length
directed percolation cluster. The distance of the rand
walkers from the point (m,t) is expected to grow asta, and
Figs. 1 and 2 present the local values of the exponentsa1
anda2 related to the ABS and RMS distances. The data
presented both for the exponents computed from the se
d(t) and from the difference seriesd(2t)2d(t). The data
presented in these figures lead to the estimatesa1
50.138(3), a250.386(3). Note that while both measure
characterize the mean transversal distance from the or
they scale witht in a significantly different rate.

Both a1 anda2 are determined by the probability distr
bution p(d,t), which expresses the probability that the ra
dom walker will be found at a distanced from the point
(m,t) after t steps. The significant difference between t
two exponents indicates thatp(d,t) should have an unusua
form, and as shown in the following, after an initial phas
and up to certain values ofd, the form ofp(d,t) is ;d2k.
The local values of the exponentk computed fort532 000
and 256 000 are presented in Fig. 3, from which it is poss
to estimatek51.76(3).

This form of the probability distribution implies that mo
of the random walks end at a bounded region around

FIG. 1. The local values of the exponenta1 as a function of the
cluster lengtht. The upper curve is derived from the original da
seriesd(t), and the lower curve is derived from the difference da
seriesd(2t)2d(t).
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point m: Even for infinite clusters, 95% of the walks end at
distanced,128, and 99% of them end at a distanced
,1024.

It is easy to see that for a probability distribution of th
form

p~d,t !;d2k, d0,d,tn k.1,

p~d,t !50, d.tn

the moments of the probability distribution, defined asMn
[^dn&1/n, have the valuesMn;tn(n112k)/n5tn2(k21)n/n.
Let us define the exponentw[n(k21); the exponent re-
lated to thenth moment is thusan5n2w/n. Assuming this
form of probability distribution holds in the present case, t
estimates obtained from Figs. 1 and 2 (a1.0.138, a2
.0.386) lead to the estimatesw.0.496, n.0.634. The

FIG. 2. The local values of the exponenta2 as a function of the
cluster lengtht. The upper curve is derived from the original da
seriesd(t), and the lower curve is derived from the difference da
seriesd(2t)2d(t).

FIG. 3. The local values of the exponentk as a function of the
distance from the point (m,t). The circles denote the results derive
from clusters of lengtht5256 000, and the squares denote the
sults derived from clusters of lengtht532 000. Note that in both
curves the values obtained ford5256 deviate from the asymptoti
behavior due to the small size of the clusters.
1-2
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third, fourth, and fifth moments of the distribution were al
computed from the numerical data, and the resultant e
mates area350.467(3), a450.509(3), a550.535(3). All
these estimates are consistent with the above estimatesn
andw. The estimate ofk51.76(3) is also consistent with th
relationk511w/n.

Of course, the estimaten.0.634 is very close to the di
rect estimate ofn.0.633 @14#, while the exponentw
.0.496 is shown in the following to be the exponent rela
to the variability between the logarithms of the number
connecting paths~configurations! of the clusters. Figure 4
presents the local values of the exponentw computed from
the original series~upper curve! and the difference serie
~lower curve!. The resultant estimate isw50.497(1), in
agreement with the former estimate of Balents and Kar
@5#: w50.50(1). All the results obtained for the moments
the distribution are also consistent with the valuesn
50.633 andw50.497.

Passing from the numerical results to their explanation
should be noted that the purpose of the explanation is to
the exponentsw andn with the exponentk through the rela-
tion k511w/n. The explanation presented in the followin
relies heavily on the similarity between the numerical resu
obtained in the present case and those obtained in@6# for the
directed polymer model. The variable which was referred
in @6# is the distance between the end points of the best p
~least energy path! and the second-best path of the regu
lattice. It was shown in@6# that the ABS distance betwee
these points grows astn2w, wheren is the space exponen
and w is the energy exponent of this model:n5 2

3 and w
5 1

3 in the two-dimensional case.
From the discussion presented in@6#, it is easy to con-

clude that thenth moment of the distribution;tn2w/n,
which implies that in the two-dimensional case,p(d)
;d2k: k51.5. In order to verify this conclusion, more tha
100 000 random lattices were used to compute the local
ues of the exponentk for t512 800 and 51 200. The resul
are presented in Fig. 5, and though finite-size effects
significant both ford,16 ~becaused is small! and for d

FIG. 4. The local values of the exponentw as a function of the
cluster lengtht. The upper curve is derived from the original da
series logN(t), and the lower curve is derived from the differen
data series logN(2t)2log N(t).
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.32 ~becauset is not large enough!, it is clear that the maxi-
mal local value of the exponentk approaches the value 1.5
and that ast increases, this maximal value extends for larg
d values, in agreement with the presumed value ofk51
1w/n51.5 derived above.

The similarity between the results obtained for the
rected polymer model and those presented in Figs. 1–3
gests that the factors which determine both sets of res
might also be similar. Following the theoretical derivation
the results presented in@6#, with some necessary adaptation
the numerical results presented in Figs. 1–3 can be expla
using the following arguments.

~i! It is possible to divide the whole cluster to a set
subclusters. A subcluster which splits at heighth from the
one leading to (m,t) is found at a distanced;hn from
(m,t), and its width is also;hn. ~Actually, in the directed
polymer model, the optimal paths of the regular lattice fo
a tree structure, while in the directed percolation cluster th
are also loops. The presence of loops makes it impossib
strictly follow the more exact derivation presented in@6#.!

~ii ! Denote byNc the total number of configurations o
the cluster, byNsc(d) the number of configurations of th
subcluster which surrounds the point at distanced from
(m,t), and bync(d) the number of configurations leading t
that point~referred to as ‘‘the pointd’’ in the following!. The
probability p(d) is thus computed aŝnc(d)/Nc&. Note that
in many random clustersnc(d)50, since the probability of
the pointd to belong to the directed percolation cluster is,1
and decreases withd.

~iii ! Two numerical findings are utilized in the following
The first is that the probability distribution of logNc(t) is a
regular ~close to Gaussian! distribution whoses;tw ~see
Fig. 4!. The second is thatNsc(0).Nc ~see Fig. 3 and the
discussion related to that figure!. The relationNsc(0).Nc
can also be derived in an analytic way, and this issue
discussed further below.

~iv! Multiply and dividenc(d)/Nc by Nsc(d) to get

FIG. 5. The local values of the exponentk as a function of the
distance between the end point of the optimal path and the end p
of the second-best path. The circles denote results obtained fo
tices whoset551 200, and the squares denote results obtained
lattices whoset512 800.
1-3



be

r,

s

ic

s

s
is

th

’s

er

ile
ra-
nt
the
s-
ea-

ult
g
t if

t

ult

n-

ting
s to

-

sti-

ined

dy
the
n
f

nt
tree
in

d no
the

RAPID COMMUNICATIONS

WANG, PERLSMAN, AND HAVLIN PHYSICAL REVIEW E 67, 050101 ~2003!
p~d!5^@nc~d!/Nsc~d!#* @Nsc~d!/Nc#&

5^nc~d!/Nsc~d!&* ^Nsc~d!/Nc&.

The last equality follows from the fact thatd might be any
point of its subcluster, and thus there is no correlation
tween the two~multiplied! ratios.

~v! Since the pointd might be any point of its subcluste
the mean ratiô nc(d)/Nsc(d)& is inversely proportional to
the width of its subcluster. This width is shown in point~i!
above to be proportional tod, and thus^nc(d)/Nsc(d)&
;1/d.

~vi! Turn now to the mean ratiôNsc(d)/Nc&, and note
that Nsc(0).Nc @see point~iii ! above#. Denote byp* the
probability that Nsc(d).Nsc(0). Since in these case
Nsc(d)/Nc.1, the following relation holds:

^Nsc~d!/Nc&.p* 1~12p* !* ^Nsc~d!/Nsc~0!&,

where the last mean is computed for the cases in wh
Nsc(0).Nsc(d).

~vii ! Relating to the cases in whichNsc(0).Nsc(d), the
mean ratio ^Nsc(d)/Nsc(0)& can be computed by
*2`

0 p(y)ey, where y[ log„Nsc(d)/Nsc(0)…. The two sub-
clusters~of 0 andd) can be treated as two independent clu
ters whose length is;d1/n @see point~i! above#, and thus the
probability distribution ofy is a Gaussian whosesy.dw/n

@see point~iii ! above#. It is easy to verify that forsy@1, the
value of this integral is.1/sy.d2w/n.

~viii ! In order to calculatep* , note thatp* is the area
below the probability distribution of y
[ log„Nsc(d)/Nsc(0)…, computed for positive values of thi
variable. Since the probability distribution of this variable
continuous, in both sides of zero its height is.1/sy
.d2w/n. Remember thatNsc(0).Nc @see point~iii ! above#,
and thus the maximal value of log„Nsc(d)/Nsc(0)… is
bounded. From this it follows thatp* is also proportional to
the height of the Gaussian near zero.d2w/n. This result,
together with the one derived in point~vii ! above, implies
that ^Nsc(d)/Nc)&;d2w/n.

~ix! The above arguments lead to the conclusion that
probability of the random walker to arrive at a distanced
from (m,t) is ;1/d* d2w/n;d2(11w/n). Naturally, this rela-
tion can hold only up tod values comparable to the cluster
width ;tn.
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One might wonder whŷnc(d)/Nsc(d)& is inversely pro-
portional to the width of the subcluster, while^nc(d)/Nc& is
not inversely proportional to the width of the whole clust
;tn. The answer is that the pointd might be the point with
the highest number of configurations in its subcluster, wh
it cannot be the point with the highest number of configu
tions in the whole cluster, which is by definition the poi
whosed50. The above derivation is possible because
point (m,t), whose position is different in each random clu
ter, is chosen as the point from which distances are m
sured.

The above derivation relies on the numerical res
Nsc(0).Nc . Actually, this result can also be proved usin
the same line of arguments presented above: Note tha
p(d);d2k;k.1, then Nsc(0).Nc . Note also that apar
from the replacement of ‘‘. ’’ by ‘‘ , ’’ in some of the rela-
tions above, the only argument which relies on the res
Nsc(0).Nc is the one related top* in point ~viii ! above.
However, since the point with the highest number of co
figurations in the subcluster ofd has fewer configurations
than the point whose d50, it is clear that
log„Nsc(d)/Nsc(0)…, logd, and thusp* ,d2w/nlogd, which
completes the proof.

Let us define byd1,2 the distance between the point (m,t)
and the point with the second highest number of connec
paths to the origin. The discussion presented above lead
the conclusion that the distanced1,2 has similar characteris
tics to those of the random walker distance from (m,t). This
conclusion was verified in the numerical study, and the e
mates of the relevanta1 anda2 are 0.138~5! and 0.383~1!,
respectively. These estimates are very close to those obta
for the random walks’ distance.

In conclusion, the numerical results obtained in this stu
indicate that the distance of the random walkers from
point (m,t) is characterized by the probability distributio
d2(11w/n), wherew.0.497 andn.0.633. The moments o
this distribution ^dn&1/n grow in proportion totan, where
an5n2w/n, and all the numerical results are consiste
with these values. The results are explained assuming a
structure of the directed percolation clusters, and though
these clusters there are also loops, their existence ha
observable influence on the numerical results obtained in
study.
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