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Directed random walks on directed percolation clusters
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The characteristics of directed random walks on directed percolation clusters are numerically studied. For
two-dimensional clusters grown at the critical probability, it is shown that the distana of the directed
random walkers from their most probable end point is determined by a probability distribpgidn
~d~ (W) where the values ofv and v are close to the values of the known exponents:0.50 andy
=0.63. This probability distribution is independent of the cluster’s length tod values comparable to the
cluster’s width~t”. The results are shown to be consistent with a tree description of the directed percolation
clusters.
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The subject of random walks on percolation clustersto some similarity between entropy in the directed percola-
known as the “ant in the labyrinth” probleifi], has drawn tion model, and energy in the directed polymer model.
quite intensive attention in the physical literat§igsd. How- On an arbitrary lattice structure, a directed percolation
ever, in spite of the numerous efforts, no simple connectiorgluster can be defined as the set of lattice paisites which
was found between the static and dynamical exponents @ire connected to some origin, while the connecting paths are
percolation, though the Alexander-Orbach conject{@¢ oOriented in a predefined directiothus all of them are of
comes close to this goal. In this article, it is shown that suctfqual length. The bonds(or siteg which compose the pos-
a simple connection does exist in the special case of directe¥jle paths are assigned at random from a bimodal (0,1)
random walks on directed percolation clusters. distribution, and a connecting bond is one whose value is
In the directed percolation modit], there is a predefined 2€r0- The probability to get a zero-valued bond is denoted by
direction in which the percolation clusters can grow. In the @nd there is a critical probabilityg) to get a zero-valued

directed random walk considered in the present study, walk ond,l e;_bovel W?'Ch _the pr?babllht){htotget(;pﬁmte_ d'r?CtEd
are also performed only in the same predefined directiongterCO atrl]c;n c_gtshe(r)sf, ',;gocsl' 'VtZ'r nanc? t\k']":_ d.';?;?é’éog? tﬁi?f
Balents and Kardal5] have already studied random walks Pe. Wi . usters , ! ) :

) ) . . . center from the origin grow in proportion td: »=0.633
on directed percolation clusters, but while their main concerrtm] wheret is the lenath of the cluster
was the variability of distances betwedélifferent clusters ' 9 .

th . f th t article is th ability of In this study, random bond directed percolation clusters
1€ main concern ot the present articie 1S the varabiiity of,, e q grown at the critical probabilitp, using the Leath
distanceswithin each cluster

oo ) method[15]. The clusters were grown to various lengths:
.In order tg study this issue, numerical results were 0b,qre than a million clusters were grown for 32 000, and
tained for directed random walks performed along tWo-mqre than 10 000 were grown foe 256 000. For each clus-
dimensional directed percolation clusters grown at the critiyg, point(site), the number of paths connecting it to the ori-
cal probabilityp. . These numerical results indicated that thegin was recorded. At the cluster’s lengttthe point with the
distanced of the directed random walkers from their most h|ghest number of Connecting paths is denoted bytx
probable end point is determined by a probability distribu-This point is the most probable end point of a directed ran-
tion p(d)~d~ """ where w=0.50 and»=0.63. This dom walker which survives steps without being trapped in
probability distribution is independent of the cluster’s lengthone of the dead ends of the cluster. Of course, in each cluster
t up tod values comparable to the cluster’s widthit”. The  the position of the pointr,t) is different, and the mean
known values of these two exponents are shown to be coriransversal distance of the pointn(t) from the origin is
sistent with a tree description of the directed percolation~t”.
clusters. On the regular lattice, the point ¢),is the point with the

The article starts with a description of the model and thehighest number of paths to the origin at (0,0), a fact which
way the numerical data were gathered. The second part preiakes it the most probable end point of a directed random
sents the numerical results which have similar characteristicgalker aftert steps. Thus, just as the transversal distances in
to previous result§6] obtained for the directed polymer the regular lattice are measured from the point)(Othe
model[7,8]. This similarity is investigated further in the final transversal distances in the present case were measured from
part of the article. The connection between the directed petthe point (n,t). Two main measures for the distantef the
colation model and the directed polymer model was studiedandom walkers from the pointr{;t) were used in this study.
in a number of article§9—13], and the present study points The first is the ABS variable, which measures the mean dis-
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. FIG. 2. The local values of the exponaw as a function of the
FIG. 1. The local values of the exponenf as a function of the  ¢|,ster |engtht. The upper curve is derived from the original data

cluster lengtht. The upper curve is derived from the original data geriesd(t), and the lower curve is derived from the difference data
seriesd(t), and the lower curve is derived from the difference dataseriesd(Zt)—d(t).

seriesd(2t) —d(t).

tance, and the second is the RMS variable, which measuré®intm: Even for infinite clusters, 95% of the walks end at a
the root of the mean squared distance. In order to overcom@stanced<128, and 99% of them end at a distande
the problem of finite-size effects, the difference series<1024. S
d(2t)—d(t), was also computed. It is easy to see that if It is easy to see that for a probability distribution of the
d(t)~t?, thend(2t)—d(t) should also grow a&*, and the form
results related to the difference series might converge faster

to the asymptotic behavior af(t).

The results of the numerical study are presented in terms
of local values of the growth exponents computed by p(d,t)=0, d>t”
log,2(V(A\t)/V(t/N)), whereV is the variable whose rate of S ]
change is estimated, andis an arbitrary constank=2 in  the moments of the probability distribution, defined Mg
this Study. E<dn>1/n7 have the Va|ue§\/|nNtV('H'l_k)/nzty_(k_l)ym.

As mentioned above, if a random walker is actually sent-et us define the exponemt=»(k—1); the exponent re-
to a directed walk along a directed percolation cluster, it idated to thenth moment is thuse, = »—w/n. Assuming this
most probable that he will stop at one of the dead ends of th€orm of probability distribution holds in the present case, the
cluster. Thus, the present study is limited to random walkgstimates obtained from Figs. 1 and 2,{0.138, a;
which survivet steps, and arrive at the base ot &ength  =0.386) lead to the estimates=0.496, »=0.634. The
directed percolation cluster. The distance of the random
walkers from the pointrf,t) is expected to grow a*, and
Figs. 1 and 2 present the local values of the exponents R i :—_:g::::::::im:ggm 1,
and a, related to the ABS and RMS distances. The data are
presented both for the exponents computed from the seriex 4
d(t) and from the difference serie{2t)—d(t). The data
presented in these figures lead to the estimates
=0.1383), a,=0.383). Note that while both measures
characterize the mean transversal distance from the origin
they scale witht in a significantly different rate.

Both «; and «, are determined by the probability distri-
bution p(d,t), which expresses the probability that the ran-
dom walker will be found at a distanca from the point
(m,t) aftert steps. The significant difference between the ,, ! ! I L
two exponents indicates tha{d,t) should have an unusual 4 8 e 2 6 128 26
form, and as shown in the following, after an initial phase,

and up to certain values af, the form ofp(d,t) is ~d~*. FIG. 3. The local values of the exponengs a function of the
The local values of the exponektcomputed fort=32000 gistance from the pointg,t). The circles denote the results derived
and 256 000 are presented in Fig. 3, from which it is possiblérom clusters of length=256 000, and the squares denote the re-
to estimatek=1.7§3). sults derived from clusters of lengti=32 000. Note that in both

This form of the probability distribution implies that most curves the values obtained fde= 256 deviate from the asymptotic
of the random walks end at a bounded region around theehavior due to the small size of the clusters.

p(d,t)~d X, dy<d<t” k>1,
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FIG. 4. The local values of the exponemtas a function of the

) : - FIG. 5. The local val f th functi f th
cluster lengtht. The upper curve is derived from the original data ues of the expondgs a function of the

- ) : . distance between the end point of the optimal path and the end point
Series qu\l(t), and the lower curve is derived from the difference of the second-best path. The circles denote results obtained for lat-
data series lobi(20)—log N(Y). tices whose =51 200, and the squares denote results obtained for
third, fourth, and fifth moments of the distribution were also lattices whose =12 800.

computed from the numerical data, and the resultant esti-

mates arev;=0.4673), a,=0.5093), as=0.5353). All >32 (because is not large enoughit is clear that the maxi-
these estimates are consistent with the above estimates ofmal local value of the exponektapproaches the value 1.5,
andw. The estimate ok=1.76(3) is also consistent with the and that ag increases, this maximal value extends for larger

relationk=1+w/v. d values, in agreement with the presumed valuekefl
Of course, the estimate=0.634 is very close to the di- +w/v=1.5 derived above.
rect estimate ofy=0.633 [14], while the exponentw The similarity between the results obtained for the di-

=0.496 is shown in the following to be the exponent relatedrected polymer model and those presented in Figs. 1-3 sug-
to the variability between the logarithms of the number ofgests that the factors which determine both sets of results
connecting pathgconfiguration of the clusters. Figure 4 might also be similar. Following the theoretical derivation of
presents the local values of the exponentomputed from  the results presented 6], with some necessary adaptations,
the original seriequpper curve and the difference series the numerical results presented in Figs. 1-3 can be explained
(lower curve. The resultant estimate iw=0.4971), in using the following arguments.
agreement with the former estimate of Balents and Kardar (i) It is possible to divide the whole cluster to a set of
[5]: w=0.501). All the results obtained for the moments of subclusters. A subcluster which splits at heigghfrom the
the distribution are also consistent with the values one leading to if,t) is found at a distancel~h" from
=0.633 andw=0.497. (m,t), and its width is also~h”. (Actually, in the directed
Passing from the numerical results to their explanation, ipolymer model, the optimal paths of the regular lattice form
should be noted that the purpose of the explanation is to linka tree structure, while in the directed percolation cluster there
the exponentsv and » with the exponenk through the rela- are also loops. The presence of loops makes it impossible to
tion k=1+w/». The explanation presented in the following strictly follow the more exact derivation presented &}.)
relies heavily on the similarity between the numerical results (i) Denote byN, the total number of configurations of
obtained in the present case and those obtaing@l]ifor the  the cluster, byNs(d) the number of configurations of the
directed polymer model. The variable which was referred tosubcluster which surrounds the point at distartérom
in [6] is the distance between the end points of the best pattim,t), and byn.(d) the number of configurations leading to
(least energy pajhand the second-best path of the regularthat point(referred to as “the poind” in the following). The
lattice. It was shown iri6] that the ABS distance between probability p(d) is thus computed a&.(d)/N.). Note that
these points grows ag~ ", wherev is the space exponent in many random clusters.(d)=0, since the probability of
andw is the energy exponent of this model=3 andw the pointd to belong to the directed percolation clusteri&
=1 in the two-dimensional case. and decreases witth
From the discussion presented [@, it is easy to con- (iii) Two numerical findings are utilized in the following.
clude that thenth moment of the distribution~t*~"/", The first is that the probability distribution of 1dg(t) is a
which implies that in the two-dimensional casp(d)  regular(close to Gaussigndistribution whoseo~t" (see
~d~* k=1.5. In order to verify this conclusion, more than Fig. 4). The second is thats(0)=N, (see Fig. 3 and the
100000 random lattices were used to compute the local valliscussion related to that figyreThe relationNg(0)=N,
ues of the exponerk for t=12800 and 51 200. The results can also be derived in an analytic way, and this issue is
are presented in Fig. 5, and though finite-size effects ardiscussed further below.
significant both ford<16 (becaused is smal) and ford (iv) Multiply and dividen,(d)/N; by Ng(d) to get
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p(d)=([Nnc(d)/Ns(d)]*[Ns(d)/Nc])
=(Nc(d)/Nse(d))* (Nsc(d)/N).
The last equality follows from the fact thdtmight be any

point of its subcluster, and thus there is no correlation be

tween the twamultiplied) ratios.
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One might wonder whyn.(d)/Ng((d)) is inversely pro-
portional to the width of the subcluster, whija.(d)/N.) is
not inversely proportional to the width of the whole cluster
~t”. The answer is that the poidtmight be the point with
the highest number of configurations in its subcluster, while
it cannot be the point with the highest number of configura-

(v) Since the pointl might be any point of its subcluster, tions in the whole cluster, which is by definition the point

the mean ratia/n.(d)/Ng(d)) is inversely proportional to
the width of its subcluster. This width is shown in point
above to be proportional ta, and thus(n.(d)/Ns(d))
~1/d.

(vi) Turn now to the mean ratiONs(d)/N.), and note
that Ng(0)=N, [see point(iii) abovd. Denote byp* the

whosed=0. The above derivation is possible because the
point (m,t), whose position is different in each random clus-
ter, is chosen as the point from which distances are mea-
sured.

The above derivation relies on the numerical result
Ns(0)=N,. Actually, this result can also be proved using

probability that Ng(d)>Ng(0). Since in these cases the same line of arguments presented above: Note that if

Ns(d)/N.=1, the following relation holds:
<Nsc(d)/Nc>2 p*+(1—p*)* <Nsc(d)/Nsc(0)>y

where the last mean is computed for the cases in whichsc(0)=Nc

Nsc(0)>Nsq(d).

(vii) Relating to the cases in whidk;(0)>N¢(d), the
mean ratio (Ng(d)/Ns(0))
1% p(y)e’, wherey=Ilog(Ns{(d)/Ns(0)). The two sub-

can be computed by

p(d)~d *:k>1, then N,(0)=N,. Note also that apart
from the replacement of=” by “ <” in some of the rela-
tions above, the only argument which relies on the result
is the one related t@* in point (viii) above.
However, since the point with the highest number of con-
figurations in the subcluster af has fewer configurations
than the point whose d=0, it is clear that
log(N(d)/Ne(0))<logd, and thusp* <d~"*logd, which

clusters(of 0 andd) can be treated as two independent clus-cOmpletes the proof.

ters whose length is-d'”” [see pointi) abovd, and thus the
probability distribution ofy is a Gaussian whosey:dW/”
[see point(iii) abovd. It is easy to verify that forr,>1, the
value of this integral is=1/oy~d """,

(viii) In order to calculatgp*, note thatp* is the area
below the probability distribution of vy

Let us define by, , the distance between the poimh,t)
and the point with the second highest number of connecting
paths to the origin. The discussion presented above leads to
the conclusion that the distandg , has similar characteris-
tics to those of the random walker distance fromt). This
conclusion was verified in the numerical study, and the esti-

=10g(Ns(d)/Ng(0)), computed for positive values of this mates of the relevant; and a, are 0.1385) and 0.3881),
variable. Since the probability distribution of this variable is respectively. These estimates are very close to those obtained

continuous, in both sides of zero its height #€l/oy
=d~"», Remember thal,(0)=N, [see pointiii) abovd,
and thus the maximal value of I@ds,(d)/NsJ(0)) is
bounded. From this it follows that* is also proportional to
the height of the Gaussian near zeral "/”. This result,
together with the one derived in poif¥ii) above, implies
that (Ng(d)/Ng))y~d ™",

for the random walks’ distance.

In conclusion, the numerical results obtained in this study
indicate that the distance of the random walkers from the
point (m,t) is characterized by the probability distribution
d~ (W) \wherew=0.497 andv=0.633. The moments of
this distribution (d")*™ grow in proportion tot®n, where
a,=v—w/n, and all the numerical results are consistent

(ix) The above arguments lead to the conclusion that thevith these values. The results are explained assuming a tree
probability of the random walker to arrive at a distartte structure of the directed percolation clusters, and though in

from (m,t) is ~1/d*d~"/"~d~ 1+ Naturally, this rela-

these clusters there are also loops, their existence had no

tion can hold only up ta values comparable to the cluster’s observable influence on the numerical results obtained in the

width ~t”.

study.
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